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Decision Trees  

We have seen different ML models for classification/regression:

linear models, nonlinear models induced by kernels, neural networks

Decision tree is another popular one:

nonlinear in general.
works for both classification and regression; we focus on classification.
one key advantage is good interpretability.
ensembles of trees are very effective.



Tree terminology  

Input:  

Output:  determined naturally by traversing the tree

start from the root
test at each node to decide which child to visit next
finally the leaf gives the prediction 

For example, 

Complex to formally write down, but easy to represent pictorially or as code.



Decision Bundary  

Nonlinear decision boundary

Learning the Parameters  

Parameters to learn for a decision tree:

The structure of the tree, such as the depth, #branches, #nodes, etc.

Some of these are considered as hyperparameters. The structure of a tree is not fixed in advance, but 
learned from data.

The test at each internal node:

Which feature(s) to test on? If the feature is continuous, what threshold .

The value/prediction of the leaves  .

So how do we learn all these parameters?

Empirical risk minimization (ERM): find the parameters that minimize some loss.

However, doing exact ERM is too expensive for trees.

for  nodes, there are roughly  (This is the size of function class ) possible decision 
trees (need to decide which feature to use on each node).
enumerating all these configurations to find the one that minimizes some loss is too computationally 
expensive.
since most of the parameters are discrete (#branches, #nodes, feature at each node, etc.) cannot really 
use gradient based approaches.

eg. cannot really use gradient descent to decide which feature to split on at any level!

Instead, we turn to some greedy top-down approach.



An example: predict whether a customer will wait to get a table at some restaurant,  training examples,  
features (all discrete).

Which feature should we test at the root? Examples:

 

For type feature, all children are  /  pos/neg.

Intuitively "patrons" is a better feature since it leads to "more certain" children.

How to quantify?

Measure of uncertainty of a node (Entropy)  

The uncertainty of a node should be a function of the distribution of the classes within the node.

Example: a node with  positive and  negative examples can be summarized by a distribution  with 
 and 

One classic measure of the uncertainty of a distribution is its (Shannon) entropy:



 is the classes.

 is a measure of how unlikely the outcome was,  is overage "unlikeliness" that we 

sample outcomes from  .

the base of log can be  .
always non-negative.
it’s the smallest codeword length to encode symbols drawn from  (assign shorter codes to outcomes 
which are more likely).
maximized if  is uniform (  ): most uncertain case
minimized if  focuses on one class (  ): most certain case

Thus, less entropy means more certain. We need to choose features that are more certain.

Examples of computing entropy  

Entropy in each child if root tests on "patrons":

For None branch



For Some branch

For Full branch

So how good is choosing "patrons" overall?

Very naturally, we take the weighted average of entropy:

Measure of uncertainty of a split  

Suppose we split based on a discrete feature  , the uncertainty can be measured by the conditional entropy:

 is the calculation from e.g. above.

Pick the feature that leads to the smallest conditional entropy.

Deciding the root  

Intuition: Pick the feature that leads to the smallest conditional entropy.

Again, for "types":

For French and Italian branch



For Thai and Burger branch

From formula above, the conditional entropy is 

Remember that less entropy means more certain. We want features that are more certain (has less entropy).

So splitting with "patrons" is better than splitting with "type". (We want more certainty - "patron") 

In fact by similar calculation “patrons” is the best split among all features.

We are now done with building the root, this is also called a stump (a decision tree with only a root).

Repeat recursively  

Split each child in the same way.

but no need to split children "none" and "some": they are pure already and will be our leaves
for "full", repeat, focusing on those  data examples:



Full Learning Algorithm  

We put the above process together:

DecisionTreeLearning (Examples):

if Examples have the same class, return a leaf with this class.

else if Examples is empty, return a leaf with majority class of parent.

else

 find the best feature  to split (e.g. based on conditional entropy)

 Tree  a root with test on  

 For each value  of  :

  Child  DecisionTreeLearning (Examples with )

  add Child to Tree as a new branch

return Tree

Variants  

Popular decision tree algorithms (e.g. , etc) are all based on this framework.

Replace entropy by Gini impurity:

 means pick example at random,  means the prob of that same being misclassified 
if we predict its label based on the label of another randomly sampled point.



meaning: how often a randomly chosen example would be incorrectly classified if we predict according to 
another randomly picked example.

if a feature is continuous, we need to find a threshold that leads to minimum conditional entropy or Gini 
impurity. Think about how to do it efficiently.

Regularization  

If the dataset has no contradiction (i.e. same   but different ), the training error of our decision tree 
algorithm is always zero, and hence the model can overfit.

To prevent overfitting:

restrict the depth or #nodes (e.g. stop building the tree when the depth reaches some threshold).
do not split a node if the #examples at the node is smaller than some threshold.
other approaches as well, all make use of a validation set to tune these hyperparameters.

Ensemble Methods Intro  

https://cs229.stanford.edu/lectures-spring2022/cs229-boosting_slides.pdf

Ensemble Methods for Decision Trees  

Key idea: Combine multiple classifiers to form a learner with better performance than any of them individually 
("wisdom of the crowd")

https://cs229.stanford.edu/lectures-spring2022/cs229-boosting_slides.pdf


Issue: A single decision tree is very unstable, small variations in the data can lead to very different trees (since 
differences can propagate along the hierarchy).

They are high variance models (a model whose predictions can vary a lot based on randomness in data), which 
can overfit.

But they have many advantages (e.g. very fast, robust to data variations).

Q: How can we lower the variance?
A: Let’s learn multiple trees!

How to ensure they don’t all just learn the same thing??

Bagging  

Bootstrap Aggregating: lowers variance

Ingredients:

Bootstrap sampling: get different splits / subsets of the data
Aggregating: by averaging

Procedure:

→ Get multiple random splits/subsets of the data

→ Train a given procedure (e.g. decision tree) on each subset

→ Average the predictions of all trees to make predictions on test data

Leads to estimations with reduced variance.

Detail  

Collect  subsets each of some fixed size (say ) by sampling with replacement from training data. (Bootstrap 
sampling: put datapoint back after sampling it.)

Let  be the classifier (such as a decision tree) obtained by training on the subset . Then the 
aggregated classifier  is given by:

Why majority vote? "Wisdom of the crowd"

Suppose I ask each of you: "Will the stock market go up tomorrow?"

Suppose each of you has a  chance of being correct, and all of you make independent predictions 
(probability of any  person being correct is independent of probability of any one else being correct).

What is Probability( Majority vote of  people being correct)?



Let  be the  at value  of the Binomial distribution corresponding to  trials and each 
trial having probability  of success.

 If I flip  coins, each of which is "heads" with probability  , what is probability that 
#heads  .

Probability( Majority vote of  people being correct)  .

Example:

Summary  

Reduces overfitting (i.e., variance)
Can work with any type of classifier (here focus on trees)
Easy to parallelize (can train multiple trees in parallel). (Training for one tree has nothing to do with 
training for trees.)
But loses on interpretability to single decision tree (true for all ensemble methods..)

Random Forests  

Issue with bagging: Bagged trees are still too correlated

Each is trained on large enough random sample of data and often end up not being sufficiently different.

How to decorrelate the trees further?



Simple technique: When growing a tree on a bootstrapped (i.e. subsampled) dataset, before each split select 
 of the  input variables at random as candidates for splitting. 

When  same as Bagging

When  Random forests (randomly choose part of features for training each tree.)

 is a hyperparameter, tuned via a validation set..

We have two randomness, the first is the data randomness from bootstrap, the second is the feature 
randomness from choosing feature randomly for each tree before splitting.

Random forests are very popular!

Wikipedia: Random forests are frequently used as "blackbox" models in businesses, as they generate 
reasonable predictions across a wide range of data while requiring little configuration.

Issues:

When you have large number of features, yet very small number of relevant features:

Prob (selecting a relevant feature among  selected features) is very small

Lacks expressive power compared to other ensemble methods we’ll see next.

Boosting  

Recall that the bagged/random forest classifier is given by

where each  belongs to the function class  (such as a decision tree), and is trained in parallel.

Instead of training the  in parallel, what if we sequentially learn which models to use from the function 
class  so that they are together as accurate as possible? (parallel vs sequential)

More formally, what is the best classifier  , where

Boosting is a way of doing this.

Boosting is a meta-algorithm, which takes a base algorithm (classification algorithm, regression algorithm, 
ranking algorithm, etc) as input and boosts its accuracy
main idea: combine weak "rules of thumb" (e.g.  accuracy) to form a highly accurate predictor (e.g. 

 accuracy)
works very well in practice (especially in combination with trees)
has strong theoretical guarantees

We will continue to focus on binary classification.



Boosting: Example  

Email spam detection:

given a training set like:

("Want to make money fast? ...", spam)
("Viterbi Research Gist ...", not spam)

first obtain a classifier by applying a base algorithm, which can be a rather simple/weak one, like decision 
stumps:

e.g. contains the word "money"  spam
reweigh the examples so that "difficult" ones get more attention.

e.g. spam that doesn’t contain the word “money”
obtain another classifier by applying the same base algorithm:

e.g. empty "to address"  spam
repeat ...

final classifier is the (weighted) majority vote of all weak classifiers.

Base Algorithm  

A base algorithm  (also called weak learning algorithm/oracle) takes a training set  weighted by  as input, 
and outputs classifier 

this can be any off-the-shelf classification algorithm (e.g. decision trees, logistic regression, neural nets, 
etc)

many algorithms can deal with a weighted training set (e.g. for algorithm that minimizes some loss, we 
can simply replace "total loss" by "weighted total loss")

e.g. Suppose I have a weighted training set as input to decision tree, that for any node calculate the 
conditional entropy by taking weights into account.

even if it’s not obvious how to deal with weight directly, we can always resample according to  to create 
a new unweighted dataset.

For unweighted data, loss on training set  . These weight are modified for weighted 
data.

Boosting: Idea  

The boosted predictor is of the form  , where,

 lies in a larger function class corresponding to boosting algorithm.

The goal is to minimize  for some loss function .



Q: We know how to find the best predictor in  on some data, but how do we find the best weighted 
combination  ?

A: Minimize the loss by a greedy approach, i.e. find  one by one for  .

Specifically, let  . Suppose we have found , how do we find  ?

Find the  which minimizes the loss .

Different loss function  give different boosting algorithms:

AdaBoost  

Input(  axis): 

The exp loss penalizes being from outlay on the wrong side of decision boundary a lot more.

AdaBoost minimizes exponential loss by a greedy approach, that is, find  one by one for  
.

Recall  . Suppose we have found , what should  be? Greedily, we want to find 
 to minimize:



where the last step is by defining the weights:

This is the weight for data.  is a normalizing constant to make  (To get a distribution).

So the goal becomes finding  that minimize:

Therefore, we should find  to minimize its the weighted classification error  (what we expect the base 
algorithm to do intuitively).

When  (and thus ) is fixed, we then find  to minimize:

the solution is given by:

How do we update the weights for the next step? The definition of  is actually recursive,

This exponentially decrease / increase weights on correctly / incorrectly classification.

AdaBoost: Full algorithm  

Given a training set  and a base algorithm , initialize  to be uniform.

For 

obtain a weak classifier 



calculate the weight  of  as

where  is the weighted error of  .

 means the base algorithm should do something non-trivial.

Update distributions

Output the final classifier  .

AdaBoost: Example  

Put more weight on difficult to classify instances and less on those already handled well.

New weak learners are added sequentially that focus their training on the more difficult patterns.



All data points are now classified correctly, even though each weak classifier makes  mistakes.



Gradient Boosting  

Recall  , For Adaboost (exponential loss), given , we found what  should 
be.

Gradient boosting provides an iterative approach for general (any) loss function  :

For all training datapoints  find the gradient

 means how should predictions change "locally" to reduce loss. It is the gradient of the label, also the 
label for next step.

Use the way learner to find  which fits  as well as possible:

 is what should be added to bring loss down,  means fit a model to  .

Update  , for some step size  .  is to add model which improves loss 
locally.

Usually we add some regularization term to prevent overfitting (penalize the size of the tree etc.)

Gradient boosting is extremely successful!!

A variant XGBoost is one of the most popular algorithms for structured data (tables etc. with numbers and 
categories where each feature typically has some meaning, unlike images or text).

(for e.g. during Kaggle competitions back in 2015, 17 out of 29 winning solutions used XGBoost)
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